苏州纳米所g-C3N4可见光响应光解水制氢研究取得进展

从太阳能中捕获能量是对环境影响最小,并且能够满足Terawatt级绿色能量需求、缓解能源危机的最直接有效方式。如果能够在半导体材料表面捕集光,在固液界面利用太阳光催化分解水产生氢气,将光能稳定存储为化学能,将会是一种可行、低成本的途径。石墨相碳氮化合物(简称g-C3N4)是具有类石墨烯结构的二维片层状聚合物半导体材料,物质本身只含有地球上富含的碳和氮两种元素,其独特的半导体光催化特性已在太阳能利用上展现出很大的潜力。

近期,中科院苏州纳米所陈韦研究员课题组成功利用廉价、环境友好的工业原料尿素,在常压热聚合条件下获得g-C3N4,所制得的黄色粉末在太阳光照射下,具有优良的光催化活性(图1 反应示意图,图2 Nanoscale 2012年4卷17期杂志背封面报道)。这种方法的优势在于原料常见、单一且便宜,反应条件简单可控易行,且可规模化制备(J. Mater. Chem. 2011, 21, 14398)。

在此基础上,课题组进一步深入研究了尿素制得的g-C3N4(简称UCN)的光催化分解水特性和机理。研究发现,UCN在模拟太阳光照下,分解水产生氢气的效率比其他常用化工原料(如硫脲、双氰胺等)制得的g-C3N4高出2-3倍以上(图3 达47.2 μmol/L,Nanoscale,2012, 4,5300)。对材料的物化性质研究结果显示,UCN的比表面积是其它材料制备的g-C3N4的6倍左右,孔体积达到4倍,表面光照激发后载流子的复合率也更低;分析其主要原因在于:尿素在热解的过程中生成大量氨气,气体的存在有利于多孔结构的形成。此外,由于尿素中含有氧原子,物质中存在的氢键和较强的C-O键都会降低材料的聚合度,更倾向于形成小片层多孔的高活性光催化材料。

此外,光催化剂除了需要具备高活性,高稳定性也是一个重要的因素。该课题组在研究g-C3N4循环稳定性的过程中发现,当光照在催化剂表面上,光生电子还原水放出氢气,水同时被光生空穴氧化产生过氧化氢(H2O2),H2O2的存在不利于催化活性,但在通入氮气或者将密闭体系敞开在无光照、常压大气等条件下,就能释放材料表面弱键结合的H2O2,自然温和地加速恢复了材料的活性,获得材料的可再生催化特性(图4 Chem. Commun.,2012, 48(70), 8826)。可见,尿素制备的多孔g-C3N4光催化活性、稳定性高和表界面功能化途径丰富,在其他领域上同样有很大的应用潜力,将给我们不断带来惊喜。

此工作得到了国家自然科学基金委、中科院以及江苏省自然科学基金委的大力支持。

图1:尿素热解合成石墨相碳氮化合物的原理图以及生成的黄色粉末

图2:Nanoscale, 2012, 4卷,17期杂志背封面报道

图3:a)尿素制备的g-C3N4的制氢效果显著提高;b)g-C3N4的比表面积和孔径分布

图4:g-C3N4可再生循环制氢性能


附件下载: